Received: July 5, 1989; accepted September 11, 1989

AN IMPROVED METHOD FOR SYNTHESIZING DIFLUOROMETHANESULFONIC ACID

QING-YUN CHEN* and SHENG-WEN WU

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032 (China)

SUMMARY

In the presence of catalytic amounts of sodium sulfate or sodium chloride, fluorosulfonyldifluoroacetic acid (1) was decarboxylated in CH_3CN-H_2O to give difluoromethanesulfonyl fluoride (2) in moderate yield. 2 can be completely hydrolyzed to the corresponding acid 3 at 80°-100°C. The overall yield of 3 from 1 was 53%.

INTRODUCTION

Difluoromethanesulfonic acid HCF_2SO_3H (3), as a catalyst, is more effective than trifluoromethanesulfonic acid in Friedel-Crafts reactions because of its adequate acidity, high boiling point, high degree of hydrogen-bonding and ease of separation from the products [1]. 3 also has potential application as an electrolyte (e.g. in fuel cells) [1]. Difluoromethanesulfonamides have been used as antiinflammatory, anticonvulsant, cardiovascular, antioedemic and herbicidal drugs because of their biological activities [2], for example, diflumidone $(HCF_2SO_2NH-C_6H_4-COPh-m)$ possesses antioedemic activities enhanced by the high lipophilic character of the HCF_2SO_2- group [3]. On the other hand, we recently have shown that 3 and difluoromethanesulfonyl fluo-

0022-1139/90/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

ride HCF_2SO_2F (2) are good difluorocarbene precursors [4, 5]. Therefore, difluoromethanesulfonic acid is a unique member of the fluoroalkanesulfonic acid series.

In the literature it was reported that difluoromethanesulfonic acid can be obtained by acidification of an alkali-metal difluoromethanesulfonate, prepared in low yield from chlorodifluoromethane and Na_2SO_3 [6] or K_2SO_3 [1], by heating (120°C) in a high-pressure vessel. In the laboratory, 3 is primarily prepared by the decarboxylation of fluorosulfonyldifluoroacetic acid FO_2SCF_2COOH (1) in boiling water to give HCF_2SO_2F (2) followed by saponification and acidification [8]. However, in this reaction the yield of 2 is quite low (19%) and the reaction is exothermic and difficult to control . 1 is readily available because the corresponding acid fluoride is a starting material for producing the commercial ion-exchange resin Nafion-H [9]. So we were interested in seeking an improved method for preparation of difluoromethanesulfonic acid from 1.

RESULTS AND DISCUSSION

Treatment of fluorosulfonyldifluoroacetic acid (1) with catalytic amounts (10% molar ratio) of inorganic salt (NaCl, Na₂SO₄) in a acetonitrile-water mixture gave a mixture of HCF_2SO_2F (2), HCF_2SO_3H (3), HO_3SCF_2COOH (4), HCF_3 (5) and HCF_2Cl (6).

NaCl FO₂SCF₂COOH \longrightarrow HCF₂SO₂F + HCF₂SO₃H + HO₃SCF₂COOH 1 CH₃CN/H₂O 2 3 4 + HCF₃ + HCF₂Cl 5 6

Representative examples are listed in Table 1.

TABLE 1

Entry	Additive ^a	T '(C)/t(h)	CH ₃ CN(v/v)	Conversion ^b	product ^C				
			н ₂ 0		2	3	4	5	6
1	_	25/5	1/1	-	-	-	-	-	-
2	Na_2SO_4	25/5	1/1	100	50	3.5	28	18	-
3	Na ₂ SO ₄	45/5	1/1	100	22	13	22	32	-
4	Na_2SO_4	25/5	1/0	100	-	-	-	93	-
5	Na_2SO_4	25/5	0/1	34	32	7.5	15	41	-
6	NaCl	25/4	1/1	100	47	4	27	20	trace
7	NaCl	25/4	1/0	100	-	-	-	83	trace
8	-	50/5	0/1	100	10	18	14	52	-
_									

Results of decomposition of 1 under different conditions

The amount of salt is a 10% molar ratio. ^b Determined by ¹⁹F NMR.
^c Isolated yield.

Table 1 shows that an inorganic salt is effective for the decomposition of 1 (see Entry 1). If acetonitrile is used as the sole solvent, 5 is the only product (Entry 4), and if only water is used, the conversion of 1 was low (Entry 5). The optimal conditions for preparing 2 and 3 are in CH_3CN-H_2O (1:1) at room temperature for 4-5 h in the presence of additive.

The conversion of 2 into 3 in water at room temperature over several days was claimed in the literature [7] but no details were reported. In our case ($25^{\circ}C$, 4-5 h), 3 was partially formed. It was interesting to find out whether the salt has some effect on the hydrolysis of 2. Table 2 shows the results of conversion of 2 into 3.

 $\begin{array}{ccc} HCF_2SO_2F & \longrightarrow & HCF_2SO_3H \\ 2 & & 3 \end{array}$

Entry	Additive ^a	T(°C)/t(h)	$\frac{CH_3CN(v/v)}{H_2O}$	Conversion ^b	Product ^C
		/ -		<u> </u>	ner2303n(*)
1	Na_2SO_4	25/5	0/1	-	-
2	Na_2SO_4	25/5	1/1	10	92
3	Na_2SO_4	35/5	1/1	25	96
4	Na_2SO_4	45/5	1/1	48	96.5
5	-	45/5	1/1	48	100
6đ	-	100/6	1/1	100	98
7 ^d	-	80/6	1/1 ^e	100	99

* Catalytic amounts of salt used. ^b Determined by ¹⁹F NMR.

 $^{\circ}$ Isolated yield. $^{\circ}$ Carried out in a pyrex tube. $^{\circ}$ THF/H₂O.

It was found that 2 was partially converted into 3 in CH_3CN/H_2O mixtures and the presence of salt had little effect on the conversion However, the conversion of 2 increased as the temperature was raised When the temperature is raised to $80^{\circ}-100^{\circ}C$, 2 can be converted into 3 completely. The overall yield of 3 from 1 was 53%.

From the products 2, 5, 6 and along with our previous work [10, 11 it is reasonable to suggest that the reaction mechanism may involve di-fluorocarbene intermediate .

1 can be partially hydrolyzed to 4 (pathway a), and is also converted to 7 in the presence of inorganic salt. 7 is unstable and decomposes readily, in organic solvents mainly into CF_2 : (pathway c), but in an aqueous organic system into the relatively stable anion 8 [4, 10a] which then gives 2. Difluorocarbene reacts with F⁻ or Cl⁻ to give 5 or 6. 2 was hydrolyzed to 3.

TABLE 2

Results of conversion of 2 into 3

EXPERIMENTAL

All boiling points are uncorrected. NMR spectra (chemical shifts in ppm from external TMS for ¹H NMR and from external TFA for ¹⁹F NMR; positive values indicate upfield shifts) were recorded on an EM-360 NMR spectrometer at 60 MHz. Infrared spectra were measured on a Shimadzu IR-440 instrument. Mass spectra were recorded with a GC-MS-4021 spectrometer. 1 was prepared according to the literature [12]. Numerical yields are based on converted material.

Synthesis of difluoromethanesulfonyl fluoride and difluoromethanesulfonic acid :

 Na_2SO_4 , 1.4g (0.01mol), CH_3CN (50ml) and H_2O (50ml) were placed in a 250ml three-necked round-bottomed flask fitted with a magnetic stirrer a dropping funnel and a reflux condenser connected with a dry-ice trap; 1, 17.8g (0.1mol) was then added with stirring at room temperature (25°C) After addition, the mixture was further stirred for 5 h at this temperature and separated into two layers. ¹⁹F NMR analysis showed that the conversion was 100%. Sulfur dioxide was collected in the cold trap. The gas mixture was then passed into the solution of sodium hydroxide to eliminate CO_2 . The remaining gas was identified as HCF_3 (400 ml,18%) by GC-MS spectroscopy. The organic layer was separated directly from the resulting mixture and 2, 6.7g (50%) was obtained after distillation. The aqueous layer was fractionated to give 3, 0.46g (3.5%) and 4, 4.9g (28%).

- b.p. 52°C. (lit [7] 52°C). ¹H NMR J 6.35 (1H, t).
 ¹⁹F NMR J 42.3 (2F, d, J_{H-F}=52 Hz), -113 (1F).
- 3. b.p. 90-92°C/2mm. (lit [1] 90-92°C/2mm).
 ¹H NMR 66.67 (t, HCF₂, J_{H-F}=52 Hz), 10.58 (t, OH).
 ¹⁹F NMR 644.8 (d).
- 4. b.p. 136-138^C/lmm. (lit [13] 145-146^C/2mm). ¹H NMR 11.40 (s). ¹⁹F NMR 32.0 (s).

Conversion of 2 to 3 in the presence of Na_2SO_4 A mixture of

 Na_2SO_4 (0.4g, 3 mmol), 2 (4g, 0.03mol), CH_3CN (20ml) and H_2O (20ml) was stirred at 45 °C for 5 h. ¹⁹F NMR analysis showed that the conversion was 48%. Distillation gave 3 (1.64g, 96.5%).

Conversion of 2 into 3 in pyrex tube A mixture of 2 (4g, 0.03mol) THF (5ml) and H_2O (5ml) was placed in a 50ml pyrex tube fitted with screw cap. The contents were stirred for 6 h at 80°C. ¹⁹F NMR analysis showed that the conversion was 100%. Distillation gave 3 (3.93g, 99%).

ACKNOWLEDGMENT

We would like to thank Professor Wei-Yuan Huang for his encouragement of this work and the National Science Foundation of China for financial support.

REFERENCES

- 1 Eur. Pat. Application 0057507 (1982).
- 2 G.G.I.Moore, J.Org.Chem., 44 (1979) 1708.
- 3 A.K.Barbour in 'Organofluorine Chemicals and their Industrial Applications' ed.R.E.Banks, Ellis Horwood, Chichester, 1979.
- 4 Q.-Y.Chen and S.-Z.Zhu, Acta Chimica. Sinica., (English. edn.) (1985) 65. Chem. Abstr. 104, 185941g (1986).
- 5 Q.-Y.Chen and S.-Z.Zhu, Youji Huaxue, <u>6</u> (1984) 434. Chem. Abstr. 101, 191244u (1984).
- 6 M.V.Farrar, J.Chem.Soc., (1960) 3058.
- 7 G.A.Sokolski and I.L.Knunyants, Izv.Akad.Nauk, SSSR, Otd.Khim.Nauk, (1961) 1606.
- 8 S.-Z.Zhu, Shanghai Institute of Organic Chemistry, Ph.D. Thesis. (1985).
 - 9 G.A.Olah, P.S.Tyer and P.Surya, Synthesis. (1986) 513.
- a. Q.-Y.Chen and S.-W.Wu, J.Org.Chem., <u>54</u>(1989), 3023.
 b. Q.-Y.Chen and S.-W.Wu, J.Fluorine Chem., 44(1989), 433.
- 11 Q.-Y.Chen and S.-W.Wu, J.Chem.Soc., Chem Comm., (1989) 705.
- 12 a. M.A.Dimitriev, G.A.Sokolski and I.L.Knunyants, Izv.Akad.Nauk.SSS Otd.Khim.Nauk., (1960) 1227.
 - b. D.C.England, M.A.Dietrich and R.V.Lindsey, J.Am.Chem.Soc., 82 (1960) 6181.
- 13 D.-B.Su, Q.-Y.Chen, L.-X.Zu and H.-P.Hu, Acta Chimica. Sinica., <u>41</u> (1983) 946.

514